ಬ್ಲೇಸ್ ಪ್ಯಾಸ್ಕಲ್ (೧೯ ಜೂನ್ ೧೬೨೩ - ೧೯ ಆಗಸ್ಟ್ ೧೬೬೨) ಒಬ್ಬ ಫ್ರೆಂಚ್ ಗಣಿತಜ್ಞ, ಭೌತಶಾಸ್ತ್ರಜ್ಞ, ಅನ್ವೇಷಕ, ಲೇಖಕ ಮತ್ತು ಕ್ರಿಶ್ಚಿಯನ್ ದಾರ್ಶನಿಕ. ಕೇವಲ ೩೯ ವರ್ಷದ ತನ್ನ ಜೀವನದಲ್ಲಿ ಈತನ ಸಾಧನೆ ಅಪಾರವಾದದ್ದು. ಇವನೊಬ್ಬ ಬಾಲಮೇಧಾವಿ. ಈತನ ಗುರುವಾಗಿದ್ದವನು ಈತನ ತಂದೆ, ಫ್ರಾನ್ಸ್ ದೇಶದ ರೂವೆನ್ ಪಟ್ಟಣದಲ್ಲಿ ಒಬ್ಬ ತೆರಿಗೆ ಸಂಗ್ರಾಹಕ.

ಬ್ಲೇಸ್ ಪ್ಯಾಸ್ಕಲ್ - ಈ ಚಿತ್ರವನ್ನು ದ್ವಿತೀಯ ಫ್ರಾಂಕ್ವಾ ಎಂಬ ಚಿತ್ರಕಾರ 1651ರಲ್ಲಿ ಸಿದ್ಧಪಡಿಸಿದ

ಇನ್ನೂ ಹದಿವಯಸ್ಸಿನಲ್ಲಿದ್ದಾಗ ಈಗ ಲೆಕ್ಕ ಹಾಕುವ ಯಂತ್ರಗಳನ್ನು ಕುರಿತಾಗಿ ಅನ್ವೇಷಣೆ ಪ್ರಾರಂಭಿಸಿದ (೧೬೪೨). ಮೂರು ವರ್ಷದ ಸತತ ಪರಿಶ್ರಮದ ನಂತರ ೨೦ ಯಂತ್ರಗಳನ್ನು ಸಿದ್ಧಗೊಳಿಸಿದ. ಇವುಗಳನ್ನು ಪ್ಯಾಸ್ಕಲನ ಲೆಕ್ಕಿಗ ಯಂತ್ರಗಳೆಂದೇ ಕರೆಯುತ್ತಾರೆ. ಪ್ಯಾಸ್ಕಲ್ ಒಬ್ಬ ಮುಖ್ಯ ಗಣಿತಜ್ಞ. ಹದಿನಾರು ವರ್ಷದ ಹುಡುಗನಾಗಿದ್ದಾಗ ಜ್ಯಾಮಿತಿಯ ಕ್ಷೇತ್ರದಲ್ಲಿ ಒಂದು ಸಂಶೋಧನಾ ಬರಹ ಪ್ರಕಟಿಸಿದ. ಮುಂದೆ ಪ್ರಸಿದ್ಧ ಗಣಿತಜ್ಞ ಪಿಯರೆ ಡಿ ಫರ್ಮಾ ಜೊತೆ ಅನೇಕ ವಿಷಯಗಳನ್ನು ಕುರಿತು ಚರ್ಚಿಸಿದ - ಇವುಗಳಲ್ಲಿ ಸಂಭವನೀಯತೆಯನ್ನು ಕುರಿತ ಚರ್ಚೆಗಳಿಂದ ಆಧುನಿಕ ಎಕನಾಮಿಕ್ಸ್ ಮತ್ತು ಸಮಾಜಶಾಸ್ತ್ರಗಳ ಕ್ಷೇತ್ರಗಳಿಗೆ ಭದ್ರ ಬುನಾದಿ ಸಿಕ್ಕಿತು ಎನ್ನಲಾಗುತ್ತದೆ. ಗೇಲಿಲಿಯೋ ಮತ್ತು ಟೊರಿಚೆಲಿ ಎಂಬ ವಿಜ್ಞಾನಿಗಳನ್ನು ಅನುಸರಿಸಿ ಪ್ರಕೃತಿಯು ನಿರ್ವಾತ ಸ್ಥಿತಿಯನ್ನು ದ್ವೇಷಿಸುವುದಿಲ್ಲ ಎಂಬ ನಿಲುವನ್ನು ತಳೆದ. ಇದರಿಂದ ಅನೇಕ ವಿವಾದಗಳೂ ಉಂಟಾದವು.

೧೬೪೬ ಇಸವಿಯಲ್ಲಿ ಇವನು ತನ್ನ ಸೋದರಿ ಜ್ಯಾಕ್ವೆಲೈನ್ ಇಬ್ಬರೂ ಜ್ಯಾನ್ಸೆಯಿಸಂ ಎಂಬ ಕ್ರೈಸ್ತ ಪಂಗಡವನ್ನು ಸೇರಿದರು. ಇವರ ತಂದೆ ೧೬೫೧ರಲ್ಲಿ ತೀರಿಕೊಂಡ. ೧೬೫೪ರಲ್ಲಿ ಪ್ಯಾಸ್ಕಲ್ ತೀವ್ರ ಧಾರ್ಮಿಕ ಸೆಳೆತಗಳಿಗೆ ಸಿಕ್ಕ. ೧೬೫೪ರಲ್ಲಿ ಅವನು ಅನೇಕ ದಾರ್ಶನಿಕ ಮತ್ತು ದೈವಸಂಬಂಧಿ ರಚನೆಗಳಲ್ಲಿ ತೊಡಗಿದ. ೧೬೫೮-೧೬೫೯ ನಡುವೆ ಸೈಕ್ಲಾಯ್ಡ್ ಬಳಸಿ ಘನ ವಸ್ತುಗಳ ಗಾತ್ರ ಕಂಡುಹಿಡಿಯುವುದನ್ನು ಕುರಿತು ಸಂಶೋಧನೆ ನಡೆಸಿದ. ತನ್ನ ಹದಿನೆಂಟನೆ ವರ್ಷದ ನಂತರ ಅಷ್ಟಾಗಿ ಒಳ್ಳೆಯ ಆರೋಗ್ಯವಿಲ್ಲದ ಪ್ಯಾಸ್ಕಲ್ ತನ್ನ ೩೯ನೇ ವರ್ಷದ ಹುಟ್ಟುಹಬ್ಬದ ಎರಡೇ ತಿಂಗಳ ನಂತರ ಅಸುನೀಗಿದ.

ಅಮೆರಿಕದ ಟಿ.ಎಸ್. ಈಲಿಯಟ್ ಎಂಬ ಕವಿ ಪ್ಯಾಸ್ಕಲ್ ಕುರಿತು "ಈತ ಲೌಕಿಕರಲ್ಲಿ ಸಂನ್ಯಾಸಿಯಂತೆ ಮತ್ತು ಸಂನ್ಯಾಸಿಗಳಲ್ಲಿ ಲೌಕಿಕನಂತೆ ಬದುಕಿದ" ಎಂದು ಬರೆದಿದ್ದಾನೆ. ಪ್ಯಾಸ್ಕಲ್ ಜೀವನ ಶೈಲಿ ಒಬ್ಬ ಸಂನ್ಯಾಸಿಯದು. ಒಬ್ಬ ಮನುಷ್ಯ ಕಷ್ಟಗಳನ್ನು ಪಡಬೇಕಾದದ್ದು ಅಗತ್ಯ ಎಂದು ಅವನ ನಂಬಿಕೆಯಾಗಿತ್ತು. ೧೬೫೯ ನಂತರ ವೈದ್ಯರು ನೀಡಬಂದ ಔಷಧೋಪಚಾರಗಳನ್ನೂ ನಿರಾಕರಿಸುತ್ತಿದ್ದ. "ಕ್ರಿಶ್ಚಿಯನ್ ಆದವನು ರೋಗಗಗಳನ್ನು ಅನುಭವಿಸಬೇಕು," ಎನ್ನುತ್ತಿದ್ದ.

ಗಣಿತಕ್ಕೆ ಕೊಡುಗೆಗಳು

ಬದಲಾಯಿಸಿ

ಪ್ಯಾಸ್ಕಲನ ತ್ರಿಕೋನ ಎಂಬುದು ಗಣಿತದಲ್ಲಿ ಬಹಳ ಪ್ರಸಿದ್ಧ.

 
[ಪ್ಯಾಸ್ಕಲನ ತ್ರಿಕೋನ

.

ಈ ತ್ರಿಕೋನದಲ್ಲಿ ಪ್ರತಿಯೊಂದೂ ಸಂಖ್ಯೆ ತನ್ನ ಮೇಲಿರುವ ಎರಡು ಸಂಖ್ಯೆಗಳನ್ನು ಕೂಡಿದರೆ ಬರುವ ಮೊತ್ತ. ಯಾವುದೇ ಸಾಲಿನಲ್ಲಿ ಬರುವ ಸಂಖ್ಯೆಗಳು ಬೈನಾಮಿಯಲ್ ವಿಸ್ತರಿಕೆಯಲ್ಲಿ ಬರುವ ದ್ವಿಪಾದ ಗುಣಕಗಳು ಎಂಬುದನ್ನು ಗಮನಿಸಿ. ಉದಾಹರಣೆಗೆ (a+b)^3 ಎಂಬುದರ ವಿಸ್ತರಿಕೆ a^3 + 3ab^2 + 3ab^2 + b^3. ಮೂರನೇ ಸಾಲಿನಲ್ಲಿ ಈ ಗುಣಕಗಳು 1, 3, 3, 1 ಬರುವುದು ಗಮನಿಸಿ. ಮುಂದಿನ ಸಾಲಿನಲ್ಲಿ 1, 4, 6, 4, 1 ಎಂಬ ಗಣಕಗಳನ್ನು ಪ್ಯಾಸ್ಕಲ್ ತ್ರಿಕೋನದ ಮೂಲಕ ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಬಹುದು.