ಟೆಂಪ್ಲೇಟು:Intmath/doc
This is a documentation subpage for ಟೆಂಪ್ಲೇಟು:Intmath It may contain usage information, categories and other content that is not part of the original ಟೆಂಪ್ಲೇಟು page. |
This template generates integral symbols using unicode, for inline {{Math}}
formulae as an alternative to LaTeX generated in <math>.
Parameters
ಬದಲಾಯಿಸಿThe template has three parameters, applicable one by one:
- Integral sign: Choose one of:
- int for ∫ symbol is U+222B
- iint for ∬ (double integral, U+222C),
- iiint for ∭ (triple integral, U+222D),
- oint for ∮ (contour integral, U+222E),
- varointclockwise for ∲ (clockwise contour integral, U+2232)
- ointctrclockwise for ∳ (anticlockwise contour integral, U+2233),
- oiint for ∯ (closed surface integral, U+222F),
- oiiint for ∰ (closed volume integral, U+2230).
- Subscript: Enter the subscript (symbol or short expression), for the lower limit or denoting an n-dimensional space or the (n − 1)- dimensional boundary.
- Superscript: Enter the superscript (symbol or short expression) for the upper limit.
NB:
- Applying italics to the integral symbol has no effect in Firefox, it remains upright.
- This template already includes
{{Su}}
.
Examples
ಬದಲಾಯಿಸಿ- Γ(z) = ∫∞
0 e−ttz − 1dt
Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''
- ∲
C F(x) ∙ dx = −∳
C F(x) ∙ dx
{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV
- ∯
∂V B ∙ dS = 0
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS
{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''
{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' = 0
{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' = −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' = {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''
- Γ(z) = ∫∞
0 e−ttz − 1dt
{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''}}
- ∲
CF(x) ∙ dx = −∳
C F(x) ∙ dx
{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV
- ∯
∂V B ∙ dS = 0
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS
{{math|{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''}}
{{math|{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
{{math|{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' {{=}} −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
{{math|{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' {{=}} {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''}}
See also
ಬದಲಾಯಿಸಿ{{Intorient}}
{{Oiiint}}
{{Oiint}}
- Wikipedia:«math»