ಈ (ಗಣಿತದ ಸ್ಥಿರಾಂಕ): ಪರಿಷ್ಕರಣೆಗಳ ನಡುವಿನ ವ್ಯತ್ಯಾಸ

Content deleted Content added
ಚು added Category:ಗಣಿತ using HotCat
ಚು Wikipedia python library
೧ ನೇ ಸಾಲು:
'''ಈ (<math>e</math>)''' ಎಂಬ ಸಂಖ್ಯೆ [[ಗಣಿತ|ಗಣಿತದ]] ಅತಿ ಮಹತ್ತ್ವಪೂರ್ಣ ಸಂಖೆಗಳಲ್ಲಿ ಒಂದು. <math>e</math> ಸಾಮಾನ್ಯ ಲಘುಗಣಕದ (natural logarithm) ಆಧಾರವೆಂದು ವಿವರಿಸಲಾಗಿದೆ. ಇತಿಹಾಸದಲ್ಲಿ ೧೭ ನೇ ಶತಮಾನದಿಂದ <math>e</math> ಇನ ಮೊದಲ ಉಪಯೋಗವು ಬಡ್ಡಿ ಲೆಕ್ಕಾಚಾರಕ್ಕಾಗಿ ಕಾಣಲಾಗಿದೆ. ತರುವಾಯ ಲೇಖನಗಳಲ್ಲಿ ಗಣಿತಜ್ನ [[ಲಿಯೋನಾರ್ಡ್ ಯೂಲರ್]] <math>e</math> ನ ಬಹಳಷ್ಟು ಗುಣಗಳನ್ನು ಆವಿಷ್ಕರಿಸಿದರಿಂದ ''<math>e</math>''ನ್ನು 'ಯೂಲರಿನ ಸ್ಥಿರಾಂಕ' (Euler's constant) ಎಂದೂ ಕರೆಯಲಾಗುತ್ತದೆ. ಇದರ ಪ್ರಥಮ ಆವಿಷ್ಕಾರಕ ಜ್ಯಾನ್ ನೇಪಿಯರ್ ಆಗಿದ್ದರಿಂದ ಇದನ್ನು 'ನೇಪಿಯರಿನ ಸ್ಥಿರಾಂಕ' (Napier's constant) ಎಂಬ ಹೆಸರಿನಿಂದಲೂ ಕರೆಯಲಾಗುತ್ತಿತ್ತು ಆದರೆ ಆಧುನಿಕ ಗಣಿತ ಶಾಸ್ತ್ರಸಮೂಹದಲ್ಲಿ ಈ ಹೆಸರು ಉಪಯೋಗದಲ್ಲಿ ಇಲ್ಲ. <math>\pi, i, 0, 1</math> ಸಂಖ್ಯೆಗಳ ಜೊತೆ <math>e</math> ಸಂಖ್ಯೆಯೂ ಗಣಿತದ ಪ್ರತ್ಯೊಂದು ಕ್ಶೇತ್ರದಲ್ಲಿ ಅತಿ ಮಹತ್ತ್ವೆಪೂರ್ಣವು ಹಾಗೂ ಉಪಯುಕ್ತವಾಗಿದೆ. <math>e </math> ಸಂಖ್ಯೆ <math>2.71828...</math> ಎಂದು ಶುರುವಾಗುತ್ತದೆ. ಆದರೆ ಈ ದಾಶಮಿಕ ನಿರೂಪಣೆ ಇಷ್ಟಕ್ಕೆ ನಿಲ್ಲುವುದಿಲ್ಲ ಏಕೆಂದರೆ <math>\pi, \sqrt{2}</math> ಅಂತೆಯೇ <math>e</math> ಒಂದು 'ಟ್ರಾನ್ಸೆನ್ಡೆನ್ಟಲ್' (transcendental) ಸಂಖ್ಯೆ. ಈ ಗುಣದ ಕಾರಣ e ಪೂರ್ವಾನ್ಕದ ಮೂಲಕ ಬರೆದಿರುವ ಯಾವುದೇ ಪೊಲಿನೊಮಿಯಲ್ ಸಮೀಕರಣೆಯ (polynomial equation with integer coefficients) ಉತ್ತರವಾಗಲಾರದು. ೫೦ ದಾಶಮಿಕ ಸ್ಥಾನಗಳ ತನಕ,
 
<math>e = 2.71828182845904523536028747135266249775724709369995...</math>
 
==ವಿವರಣೆ==
 
<math>e</math> ಸಾಮಾನ್ಯ ಲಘುಗಣಕದ ಆಧಾರ. ಅದೆಂದರೆ
 
<math> \ln e = 1</math>.
 
<math>e</math> ನ್ನು ಇನ್ನೊಂದು ರೀತಿಯಲ್ಲಿ ವಿವರಿಸಬಹುದು: <math>(1+1/n)^n</math> ಎಂಬ ಪದವನ್ನು <math>n</math> ಹೆಚ್ಚಿಸಿ ಲೆಕ್ಕ ಮಾಡಿದರೆ ಕೊನೆಯಲ್ಲಿ ಈ ಶ್ರೇಣಿಯಲ್ಲಿರುವ ಎಲ್ಲ ಸಂಖ್ಯೆಗಳು ಒಂದೇ ಸಂಖ್ಯೆಯನ್ನು ಸಮೀಪಿಸುತ್ತವೆ. ಈ ಕೊನೆಯ ಸಂಖ್ಯೆ <math>e</math> ಎಂದು ಸಿದ್ಧ ಪಡಿಸಲಾಗಿದೆ. ಸಂಕೇತದಲ್ಲಿ,
 
<math>\displaystyle lim_{n->\infty} (1+1/n)^n = e</math>
ಈ ವಿವರಣೆ ನೀಡಿದ ಗಣಿತಜ್ನ ಸ್ವಿಟ್ಜರ್ಲಾಂಡ್ ದೇಶದ ಜೇಕಬ್ ಬರ್ನುಇಲ್ಲಿ.
 
ಈ ವಿವರಣೆ ನೀಡಿದ ಗಣಿತಜ್ನ ಸ್ವಿಟ್ಜರ್ಲಾಂಡ್ ದೇಶದ ಜೇಕಬ್ ಬರ್ನುಇಲ್ಲಿ.
 
==ಇತಿಹಾಸ==
 
೧೬೧೮ ರಲ್ಲಿ ಸ್ಕಾಟ್ಲೆಂಡ್ ಇನ ಗಣಿತಜ್ನ ಹಾಗೂ ಭೌತವೈಜ್ನಾನಿ ಜಾನ್ ನೇಪಿಯರ್ ಲಘುಗಣಕ (logarithm) ಗಳ ಬಗ್ಗೆ ಪುಸ್ತಕದ ಅನುಬಂಧದಲ್ಲಿ <math>e</math> ಆಧಾರದಲ್ಲಿರುವ ಲಘುಗಣಕದ ಪಟ್ಟಿಯೂ ನೀಡಿದರು ಆದರೆ ಆಧಾರ ಆಗಿದ್ದ ಸಂಖ್ಯೆಯ ಬಗ್ಗೆ ಹೆಚ್ಚು ವಿವರಿಸಲಿಲ್ಲ. ಇದನ್ನು ಮೊದಲು ಮಾಡಿದವನು ಜೇಕಬ್ ಬರ್ನುಇಲ್ಲಿ. ಬರ್ನುಇಲ್ಲಿ ಸಂಯುಕ್ತ ಬಡ್ಡಿ ಲೆಕ್ಕಾಚಾರದಲ್ಲಿ (compound interest) ಸಮಸ್ಯೆಯೊಂದನ್ನು ವಿವೇಚಿಸುತ್ತಿದ್ದನು. ನಿಮ್ಮ ಹತ್ತಿರ ಒಂದು ರುಪಾಯುವಿದೆ. ಅದಕ್ಕೆ ೧೦%, ೧%, ೦.೧% ಸಂಯುಕ್ತ ಬಡ್ಡಿ ೧೦, ೧೦೦, ೧೦೦೦ ತಿಂಗಳಿಗೆ ಹಾಕಿದರೆ ಈ ಸಮಯದ ನಂತರ ನಿಮಗೆ ೨.೫೯, ೨.೭೦೪, ೨.೭೧೬ ವಾಪಸ್ಸು ಬರುವುದು. ಅರ್ಥವೆಂದರೆ ೧ ರುಪಾಯಿಗೆ <math>\frac{1}{n}%</math> ಬಡ್ಡಿ <math>n</math> ತಿಂಗಳಿಗಿಟ್ಟರೆ, <math>n</math> ಅನಂತವಾದರೆ ನಮ್ಮ ಹತ್ತಿರ ಇರುವ ಹಣ ೨.೭೧೮೨೮... ಸಂಖ್ಯೆಯ ಹತ್ತಿರ ಬರುವುದು. ಈ ತತ್ವವನ್ನು ಬರ್ನುಇಲ್ಲಿ ಮೊದಲು ಆವಿಷ್ಕರಿಸಿದನು.
<ref name=Maor1>{{cite book | author =Eli Maor | title = E - The Story of A Number | publisher = Princeton Science Library | year = 2009| isbn = 978-0691141343 }}</ref>
ಇದರ ನಂತರ ಯೂಲರ್ ಈ ಸಂಖ್ಯೆಗೆ <math>e</math> ಎಂಬ ಪ್ರತೀಕವನ್ನು ನೀಡಿ ಲಘುಗಣಕಕ್ಕೆ ಆಧಾರವಾಗಿ ಉಪಯೋಗಿಸಿದನು.
 
== <math>e</math> ಉಪಯೋಗಿಸುವ ಇತರ ಸಮಾನಾಂತರ ಫಾರ್ಮ್ಯುಲಾಗಳು ==
<math>e^x</math> ಪದದ ಟೇಲರ್ ಸಾಲಿನ ನಿರೂಪಣೆಯನ್ನು (Taylor series representation) ಉಪಯೋಗಿಸಿ ಈ ವಾಕ್ಯವು ಬರೆಯಲಾಗುತ್ತದೆ: [[File:Euler%27s_formula.svg|thumbnail|ಯೂಲರಿನ ಫಾರ್ಮ್ಯುಲ]]
 
<math>e^x</math> ಪದದ ಟೇಲರ್ ಸಾಲಿನ ನಿರೂಪಣೆಯನ್ನು (Taylor series representation) ಉಪಯೋಗಿಸಿ ಈ ವಾಕ್ಯವು ಬರೆಯಲಾಗುತ್ತದೆ: [[File:Euler%27s_formula.svg|thumbnail|ಯೂಲರಿನ ಫಾರ್ಮ್ಯುಲ]]
 
<math>e^x= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . = \sum_{n=0}^{\infty} \frac{x^n}{n!}</math>
 
ಆದ್ದರಿಂದ
 
<math>e= 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + . . . = \sum_{n=0}^{\infty} \frac{1}{n!}</math>.
 
<math>e</math> ಸಂಖೆಯ ಮೂಲಕ ಕಾಂಪ್ಲೆಕ್ಸ್ ಸಂಖ್ಯೆಗಳ ಮತ್ತು ಟ್ರಿಗೊನಾಮೆಟ್ರಿಕ್ ಪದಗಳ ಮಧ್ಯ ಆಳವಾದ ಸಂಯೋಜನೆಗಳನ್ನು ಯೂಲರ್ ಸಿದ್ಧ ಪಡಿಸಿದನು. ಪ್ರತ್ಯೋಂದು ಸಂಖ್ಯೆ \theta ಗೆ
 
<math>e^{i\theta} = cos(\theta) + isin(\theta)</math>
 
ಸಮೀಕರಣ ಸತ್ಯವು. ಇದರಲ್ಲಿ <math>\theta = \pi</math> ಸಮೀಕರಣಗೊಂಡರೆ ವಿಶೇಷ ನಿದರ್ಶನವಾಗಿ
 
<math>e^{i\pi} + 1 = 0</math>
 
ಎಂದಾಗುವುದು. ಈ ಸಮೀಕರಣವನ್ನು ಭೌತವೈಜ್ನಾನಿ ರಿಚರ್ಡ್ ಫೈನ್ಮನ್ (Richard Feynman) 'ಗಣಿತದ ಅತಿ ಗಮನಾರ್ಹವಾದ ಸೂತ್ರ' ಎಂದು ಕೊಂಡಾಡಿದ್ದಾರೆ.<ref name=Feynman>{{cite book | author =James Gleick | title = Genius: Richard Feynman and Modern Physics | publisher = Vintage | year = 1993 | isbn = 978-0679747048 }}</ref>
 
==ಉಲ್ಲೇಖನಗಳು==
 
[[ವರ್ಗ:ಗಣಿತ]]
"https://kn.wikipedia.org/wiki/ಈ_(ಗಣಿತದ_ಸ್ಥಿರಾಂಕ)" ಇಂದ ಪಡೆಯಲ್ಪಟ್ಟಿದೆ